Exercise 7.7.3

Find the general solutions to the following inhomogeneous ODEs:

$$
y^{\prime \prime}+4 y=e^{x} .
$$

Solution

This is a linear ODE, so its general solution can be written as a sum of the complementary solution and the particular solution.

$$
y(x)=y_{c}(x)+y_{p}(x)
$$

The complementary solution satisfies the associated homogeneous equation.

$$
y_{c}^{\prime \prime}+4 y_{c}=0
$$

Because it's homogeneous and the coefficients on the left side are constant, the solution for y_{c} is of the form $e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}+4 e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
\begin{gathered}
r^{2}+4=0 \\
r=\{-2 i, 2 i\}
\end{gathered}
$$

Two solutions to the ODE are $y_{c}=e^{-2 i x}$ and $y_{c}=e^{2 i x}$. By the principle of superposition, the general solution is a linear combination of these two.

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{-2 i x}+C_{2} e^{2 i x} \\
& =C_{1}[\cos (-2 x)+i \sin (-2 x)]+C_{2}[\cos (2 x)+i \sin (2 x)] \\
& =C_{1}(\cos 2 x-i \sin 2 x)+C_{2}(\cos 2 x+i \sin 2 x) \\
& =\left(C_{1}+C_{2}\right) \cos 2 x+\left(-i C_{1}+i C_{2}\right) \sin 2 x \\
& =C_{3} \cos 2 x+C_{4} \sin 2 x
\end{aligned}
$$

On the other hand, the particular solution satisfies

$$
\begin{equation*}
y_{p}^{\prime \prime}+4 y_{p}=e^{x} \tag{1}
\end{equation*}
$$

Because the inhomogeneous term is an exponential function, y_{p} is expected to be an exponential function as well: $y_{p}(x)=A e^{x}$. Substitute this formula into equation (1) to determine A.

$$
\left(A e^{x}\right)^{\prime \prime}+4\left(A e^{x}\right)=e^{x} \quad \rightarrow \quad A e^{x}+4 A e^{x}=e^{x} \quad \rightarrow \quad 5 A=1 \quad \rightarrow \quad A=\frac{1}{5}
$$

Therefore, the particular solution is $y_{p}(x)=(1 / 5) e^{x}$, and the general solution to the original ODE is

$$
\begin{aligned}
y(x) & =y_{c}(x)+y_{p}(x) \\
& =C_{3} \cos 2 x+C_{4} \sin 2 x+\frac{1}{5} e^{x} .
\end{aligned}
$$

